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IN D DIMENSIONS AND THE SINGULARITY AT 2kF
N. L. Sharma and M. Howard Lee
Department of Physics
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ABSTRACT

The static susceptibility of a free electron gas
in D dimensions at T = O is obtained by techniques of
dimensional regularization. Our solutions for the sus-
ceptibility x(k,D) are given in terms of the hyper-
geometric function. For any integer dimensions analytic
expressions are possible. The high and low k series

solutions are shown to be related by an analytic con-

tinuation if D is an odd integer, but not related if D

is an even integer. The singularity at 2kF is a branch

point, whereupon the series solutions are absclutely

convergent, yielding x(kasz,D) = (D-l)-l. The )

relationship of ykD has the appearance of a PVT diagram.
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I.

INTRODUCTION

1
L .
The wave vector k dependent susceptiyility x(k) is a basic physical

quantity in many-body physics.1 It enters into a variety of physical
relationships, e.g., dispersion relations, scaling laws. For a free electron
gas this quantity is exactly known in spatial dimensions D = 1,2, and 3.%°6
| Especially inte:es;ing is its singular behavior at k=2ké»due to what is kngwn
as the Pauli blocking, where kF is the Fermi wave vector. This singularitf
is responsible for the Kohn anomaly in the phonon spéc?rum of a metal.7 The
singularity in the susceptibility at 2kF is D depend;nt. In D = 1 the sus-
ceptibility has a logarithmic divergence. In D = 2 the susceptibility is
finite but its slopg is discontinuous. In D = 3 the slope has a logarithmic
divergence. This trend suggest$ that the strength of the singularity becomes
weakér with increasing dimensions. A precise knowledge of the D dependence would
be of interest. -
In addition to its own intrinsic ipterest, the susceptibility for a free
electron gés is useful in other ways. If electrons now freely interact pair-
wise via the Coulomb force, the susceptibility for the interacting electron gas
can always be written in the following form: xint(k) = x(k)/(1. + Ak x(k)), where
Ak is some function of the interaction.ar If Ak = Vo where Vi is the Fourier
transform of the Coulomb potential, one gets tﬁe simple RPA theory. If
Ak = vk(l - Gk), where Gk is a local field term, one recovers the generalized
RPA theory. Bence,lfﬁé knowledge of the susceptibility for a free electron
gas is essential to these RPA th;ories.
The above idea may be extended to the linear response theory of dynamical
processes since x(k) = x(k,w=0), where w is the fréquency. In dynamical theories,
the knowledge of the static susceptibility is always pre-supposed.1 For example,

the relaxation function is normalized with respect to the static susceptibility.

Moment sum rules are expressible in terms of the static susceptibility.9




More subtle is that the susceptibility may be defined by the Kubo scalar
product (see sec. II). The Kubo scalar product is an inner product which

realizes an abstract Hilbert space. In this realized space time-dependent

10

quantum statistical problems are all definable. Hence, the existence of

the susceptibility plays a central role in the study of time evolution ofA
dynamical variables.l1 In such a study there is the poésibility that the
relaxation function may assume a mean-field form in all spatial dimensions
greater than a certain critical Qalue.lz This kind of dynanic anomaly is
signaled by a deformation of the realized Hilbert space.13 Furthexmore, the
critical dimension may'take on a noninteger value. The physics of noninteger

dimensions is of current theoretical interest. See e.g., fractals,l‘

e—expansionsls, kinetics of fo:matibn.*s

The evaluation of the susceptibility for higher integer dimensions

e.g., D = 4 may be carried out as was for D = 1 - 3 (see Secs. II and III}. .

We shall use techniques of dimensional regularization developed in particle
physics17 to obtain a solution for the susceptibility which is valid for any D,
integers and nonintegérs. This solution x(k,D) might be viewed as e.g., the

PVT diagram of a homogeneous fluid. It traces a contour, which is a map of a

continuous surface. This map is naturally divicded into two regions (high and low

k) by the D line at k = ZkP.
examine tﬁe mathematical nature of the singularity at ZkF.

We find that x(Zk /D) = 1/(D-1), D>1; x'(2kF.D) = -(D-2)/(D-1) (D-3),
D >3, etc. We also find that the susceptibility is of two families, D odd and
D even. For D odd, the singularity at 2kF is all logarithmic in origin. For
D even (high k region) the singularity is of the sguare root. For D odd, the
solution in one region is an analytic continuation into the other and 2kF is a
branch point. For D even, there are -0 such relationships and k = 2kF is a
branch point only in the high k region.
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By moving aldngside of this boundary line, one can




II. STATIC SUSCEPTIBILITY

A free electron gas is described by the following Hamiltonian:

B=Ze ég* Y . (1)

where € = k?/Zm, m is the mass of the electron, °k+ and ) are. respectively,

the fermion creation:and annihilation operators at wave vector k. Our units are
such that ¥ = 1. The longitudinal response to a weak static density-coupled
perturbation is the static susceptibility given by the Kubo scalar product

B

x(k) = (p,, p;{ = I:ax <e
[ <]

(KoSoPo)gl )
' AH -\H _ +

> ' (2)
where B is the inverse temperature, the brackets < ... > denote an ensemble
average, + denotes Hermitian conjug&tion, and P is the density fluctuation

operator defined as

- e A e e

.+
=31 ¢ C ... 3
Py %% Sk (3)

: It is well known that the K.S.P. for a free electron gas may be given by

x(k) = 2}:.(fP - (4)

: fp+k)/(ep+k —ap)

where #k is the Fermi function. Converting the sum into an integral we can

rewrite (4) in spatial dimensions D as

=D D
k 4 (2n dp £ /(¢ -€_). 5

Xp(K) = 4 (2m) I P L /le 0 5 (s)
At T = O the Fermi function is a step function, i.e., fk = e(kP - k). Hence, 1
for D small integers one can directly evaluate (5). For D = 1-3, the susceptibility
-~ is already known.z,-6 For comparison purposes, we shall list its normalized values
iD(k) = xD(k)/xD(o), expressing k in units of kP:

%, 00 = ™1 1n|(240)/(2-K) | (6a)

%y(k) = 1 - 8(k-2).(1 - ax)® (6b)

0 =E 0+ kA - 1 2o/ -B | (6c)




I1X. EVALUATION OF THE SUSCEPTIBILITY FOR D = 4

The static susceptibility for D = 4 may be written down from (5):

2 1 2% )
mkp 3 [.. sin’® . )
xd(k) = k Idp P Ide k + 2p cos® ° o
o o

We shall consider the angular integral first (denoted by Q). It may be converted

into a contour integral on the unit circle by the substitution u = eief

(uz - 1)2

v’.(u-u).(u-u)

Q= -~ é%'§ du " (8)

where
u =k/2p ¢ ((k/zp)2 - 1) ¥

The zeros of the denominator are O, u, and u_. The 2zeros u_ and u_ may be real

or complex depending on whether |k/2p|. is greater or less than 1l.

(1) lk(ZEl >1
The conjugate zeros :u, and u_ are real 1lving, respectively, ' outside

and inside the unit circle. Hence, the zero u does not contribute to the integral.

The residues at O and u_ are, respectively,‘k/p ard -2((k/2p)2 - 1)*. Together,

Q= mk/20° . (1- Q- (2p/)D7Y.

(ii) jk/ <1

The conjugate zeros are'now complex and lie on the contour of integration.
If we take the Cauchy principal value, their contributions cancel each other
exactly, leaving only the zero at the origin to contribute to the integral,
giving Q = nk/292.

Both may be combined to read as

0 = ms2p%. [1- 00 ~ap?) .1 - (2p/m 5*1- (9)

Using (9) in (7) we can now complete the radial part:

%4 (K)

x4(k)/x4(0)

1 - x%/6. [1 - 8(k-2).(1 - 4/k> 3/2]. (10)




where x4(0) = mkF2/4ﬂ2. We observe that the susceptibility and its derivative
are both finite and continuous at k = 2kF.

For D even generally, the same idea may be used to evaluate the angular
integral. Thexe always is one pole of oider D-2 at the origin. The conjugate
poles u, and u_ behave in the same manner ﬁs described for D=4. For D odd,
one cannot avail of this simplification and must resort to e.g., integration |
by parts. In any event, the evaluation of the susceptibility by this standard
approach becomes very tédious as D >, Also one is limited to integer dimensions
only. We shall, theréfore, consider another approach i.e., dimensional regulari-
zation17 which may allow us to obtain the suscéptibility possibly more simply

and , more important, in ahy dimensions.

e




IV. DIMENSIONAL REGULARIZATION

From (5) it is possible to express the zero temperature susceptibility for

D> 3 as follows:'®

1 L
Xp(k) = A Idp ot Ide (sin®)®"2. (4 + p cose) ™
0 =]
=AI (11)

where A = A(k,D) = ZkFD

units of kF' To evaluate this double integral, we exchange the order of

b
SD_l/keF(Zn)D, where S = 2T (¥)/T(4D), and k is in

integration. For k >2 the integrand is well behaQed in the given interval

of p. One can, therefore, expand it in powers of (2/k) and carry out the inte-
gration term by term. If, for k X 2, one attempts to expand it in pdwers sf
(k/2) , one encounters a pole in the interval of p. To avoid this difficulty,

we consider the following integral:

1= Idef (sing) P2 Idp 2P (4 + p cosof® L. (12)

o o

If we assume s is a positive integer, the new integrand is now well behaved in

the interval of p for any k. Hence, one may expand it binomially and complete

the integration term by term. Then one may possibly analytically continue Is to

obtain Io £ X. Clearly for K>2 this process is unnecessary, hence it can be

used as a direct test.

For any positive integer g, we obtain

2s-1 ) -
)" r(2e) 'l n vs D= 2 26 -n-1.
I = a ]
s nzo (D+2s-n-1) . T'(2s-n) .l (n+1] )c (sin3) (cos8) (13)

-]
Next the angular integration although cumbersome is straightforward. Terms of

even n vanish. Letting n -+ 2n-1, we get

8
1= & Jo/2% 0 (20) 1 (k) . T (smnth) ; 14)

n=1 I'(2n). I'(2s~2n+1). T (s-n+¥D+1) °




The above expression is appropriate for the k <2 expansion. To obtain an
expression more suitable for the k >2 expansion, we rewrite (14) in ascending

powers of (2/k) by letting s-n + n,

s-1
_ 2s-1 ¢. 2n I'(2s).T(¥D-%) .T (n+%) : .. (15)
g = ¥(k/2) nzo (2/K) " T(2s-2n). T(2n+1) .T (n+hD+1)

Both expressions (14 & 15) are clearly well defined for any finite pOgitive
integer s. There are s terms in each expansion. We now take advantage of the
Gamma functions present in our expansions to perform analytic continuation. We
first note that for any r >0, |

lim T(t+l) = tI(t)

(-1)..(-2)..(-x+1) (-x) T(-x).

t>-1
Hence
1im  L(2s) - ‘(-1)(-2)..(—2n+1).r(-znﬂi= -1
" T(2n).r(2s~2n+l) I'(2n) .T'(-2n+1)
s 20 .
and
1im T (2s) D=2 ..(-2m) . T(-2n)
I'(2s-2n) P(2n+l) T T(-2n).T(2n+1) :
s >0
Using these results we ge't19
I = -4rso-n) /2057 Tienth) /T(entDe)), k<2 (16a)
n=1l .
=T (30-%) § (27K 2 r(ned) T(avbDF), K> 2 - (16b)

n=o
. L ' D 20
Finally, using the definition for A, x(k=0,D)=(kF/2ﬁ) .SD/eF, where
sD/SD 1= I (%) .T (%¥D-%) /T (¥D),
we get X(k,D) = x(k,D)/x(0,D)

y (!m) 2n-2 T (-nth)

4y ngl (k/2) ooy ¢ K < 2 (17a)
L (4D) 2n+2 [(nth)

T Z (2/k) Trkoiy ¢ K7 2 (17b)

n=o

. . y ] '..’u,’1)§1.;.‘;lﬂ:5‘~, O
Vit nd OO “ha 3, 800,8 N‘fh“ " ‘ R RN SO AL UL PR K™ Wl v'-‘.v‘l:'.'éf""; A A A RS AL IR
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Since the Gamma functions are well defined for any arguments other than
zero or negative integers, our solutions (17a,b) are applicable to any value
of D. Our series solutions agree term by term with the high and low k exp;nsions
of the susceptibility for D = 1-4 (egs. 6 and 10) previously obtained by a -

conventional method.




V. APPLICATION OF THE HYPERGEOMETRIC FUNCTION

It is possible to express the susceptibility series (egs. 17a,b) in terms

of the hypergeometric series F(a,b;c;t) defined as follows:21

F(a,b;c;t) = X (an bn/cn nl) t°, e} <1 (18)
=0

where an = F(n+a)/r(a), etc., ¢ #'O, -1,-2,...The advantages of having the
susceptibility given in the hypergeometric function (h.g.f.) are evident.
One can cobtain analytic representations for integer dimensions. Properties
of the h.é.f. may be used to study the behavior of the susceptibility at the
singular point 2kF. The high and low k expansions may be related through an
analytic continuation.

For this purpose, we introéuce z =“(%‘k)z and let il(z,D) = ¥(z<1,D) and
iz(z,D) =-%(z>1,D). We shall consider %, (z,D) first. Using the identity

I(t-n) = (-1)7 T'(t).T(-t+1) /T (~tén+l)

in (17a) we obtain after some manipulations

- T(¥)/CT(-4D). ) z® T'(n+l-%D)/T(n+3/2)

n=o

xl(le)

= F(1,1-%D;3/2;2). (19a)

Similarly, we obtain from (17b) with aid of (18)

X,(z,D) = pt 271 F(1,%;1+4D;27 ). (19b)
Hence, together we have

x(z,D) = F(1,1-%D;3/2;2), =z <1 (20a)

=p ey Yy, 2> 1. (20b)

We observe that for D = 1 the high and low sides of the susceptibility have
the same parameters of the h.g.f.: a =1, b = ¥, ¢ = 3/2. For these values the
h.g.f. has an analytic representation,

F(1,%;3/2:¢2) = 5™ 1n(l + £)/(1 - 8), lel <1. (21)

The resulting susceptibility is in exact agreement with the D = 1 result

(eq. 6a).
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To obtain analytic representations of the susceptibility for other
integer dimensions, we study the h.g.f. Consider F(1,1-%D;3/2;t) first.

For D even, b = 0,-1,-2,.. and for D odd, b = 3,-#,-3/2,..Hence,'for D even,
21

the h.g.f. is a polynomial. For D odd, the h.g.f. is contiguous“, i.e.,
P, =%+ %¥01-0F (22)
where Pb = F(1,b;3/2;t). Hence, ﬁsing the known form for F%’ one can

generate all others readily. Now since F% contains a logarithmic singularity
(see 21), all odd-dimensioned low-k susceptibility contains the same singularity.
We next consider F(1,%;1+%D;t). For D even (including.0), ¢ =1,2,3,...

and for D odd, ¢ = 3/2, 5/2, 7/2,.. In both cases the h.g.f. is again

contiguous,
Fc+l = 3/2t.(1 - (l-t)Fc) . (23)
where Fc = F(1l,%;c;t). Hence, now there are two "seeds," Fl and F3/2, where
¥
Pl = F(l,4%;1;t) = (1 - t) (24)
and F3/2 is already given (see 21). Thus all the even-dimensioned high k

susceptibility has a square root singularity, while the odd-dimensioned high k
susceptibility has a logarithmic singularity.

Shown in Table I are.analytic representations of the susceptibility for
D =0 - 6 in the high and low k regions obtained by the relationships of the
contiguous h.g.f. Even and odd dimensional cases are grouped separately to
emphasize their distinctive singular behavior. These results for D =1 - 4
are in agreement with the previously established results (egs. 6 and 10).
Inz agr=ement for D = 1 and 2 is interesting in view of the original
restriction imposed on eq. (11), i.e., D 2 3. Evidently, the dimensional
regularization techniques used here have ultimately removed the restriction.

Illustrated in Fig. 1 is the susceptibility vs. wave vector for a few low

integer values of D.



VI. BEHAVIOR NEAR ka

The h.g.f. P(a,b;c;t) is absolutely convergent on [t|= 1 if Re(c-a-b) > O
and has the value21 .
F(a,b;c;l) = P(c{.P(c—a—b)/P(c—a).P(c-b). . (27)
If applied to the high and low k sides, we find that
%, (2=1,0) = %, (z = 1,0); = (-1, b>1. (28)
Thus, the susceptibility is continuous at z =1 (k = 2kF) except when D = 1,

The slope at the bouniary can be evaluated by using

'gT F(a,bjc;t) = ?c'—b F(a+l,b+l;c+l;t) (29)

and (27) provided nocw that Re(c-a-b~1l)> 0. We obtain

%—z- Xy (z=1,D) = % X, (2 =1,D)= -(D-2)/(D-1) (D-3), D > 3. o (30)

Similarly, we obtain

3 2.

(3;9 x(z=1,D) = 2(D-2) (D-4)/(D-1) (D-3) (D-5}), D > 5, (31)
Thus, where convergent, we see that the hiqh and low k sides of the
boundary have the same firstAand second derivatives. In Table 1I, we have given
the boundafy values.

We can also examine the behavior of the susceptibility along the boundary
itself, that is, the z=l constant line in, say, the Dz plane; From (28) we see
that the behavior is éimplek, e.g., %5 X(1,D) = -(D-l)-z, etc., than the
behavior in the direction perxpendicular to the boundary.

We shall use other propefties of the h.g.f. to establish additional
properties of the susceptibility at the boundary. ~Tirst of all, the h.g.f.
F(a,b;c;t) has two branch points, one at t = 1 and the qther at infinity if
a or b is not a negative integer. Hence, except when D is an even integer

on the low k side, the boundary is a line of branch points.
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Also the h.g.f. F(a,b;c;t) is defined by a power series (see eq. 18) for
t complex when |t| <1. It is certainly regular in this domain. Hence, the
susceptibility is defined even for nonipteger values of D. The h.g.f. is also
defined by analytic continuation when |t| 21. It suggests, therefore, that
iz(z,D) may be an analytic continuation of il(z,D) into the high k region.

It is known that when t lies in the part of the cut plane for which Itl 21,
larg(-t) | < =, |

F(a,b;c;t) = B(a,b.c).(—t)-aF(a,l-c+a;l-b+a;t-1)

+ B(b,a,c) . (-t) PF(b,1-ctbsl-atbit 1), (32)

where

B(a,b,c) = I'(c). I'(b-a)/T(b).T{c-a). (32a)
Hence, F(a,b;c;t) when it has a meaning is a one valued analytic function,
regular in the whole plane of t, cut along the real axis from t = 1 to «.

Let the domains |z| <1 and |z]| 21 be denoted, respectively, by 0, and D,.
By our definition iI which is analytic in 01 is x in Dl and similarly iz is the
analytic function X in 02. Then by the above-stated properties of the h.g.f.,
F = F(1,1-%D;3/2;z) is analytic in Dl UD,. If for Re z, Re F= il in 01 and

Re F = iz in 02, then iz is the analytic continuation of il into 02.22 By (32),

-1+%D -1, -%+ 4D

F=p2zY p(1,b;144D;52 1) + T(3/2) T(4D) /T (¥ +4D) . (-2) r-z7% .(33)

consider F when D is an odd integer first. It is sufficient to take D = 1

since F of other odd integers can be generated from it. Then, for D = 1,

¥

% ) + ¥(-z) °.

Fatz5in(l + 25/ - 2 ¥ (30)

In the domain Dl the above logaritnmic argunent is négative. It can be
resolved into real and imaginary parts, the latter of which cancels the second
term of (34) exactly, leaving

Faiz¥ 10+ 2970 - 29, (35)

Hence, Re F = il in 01. 1t follows directly that Re F = §2 in 02. One can
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similarly show that whenever D is an odd integer, iz is the analytic continuation
of il into Dz. |

We next consider F when D is an even integer. Then, b = 1-%D is either
zero or a negative integer and il = F(1,b;3/2;2z) is an et tire function being
a polynomial. But izlis not a polynomial. The two functions are thus not
related although continuous at z = 1. One can, in fact, show by (33) that,
for Re z, Re F = il in 0,, but Re F# iz in D,. With this analysis we
conclude that when D is an odd integér, iz is the analytic continuation o£

il; but when D is an even integer, it is not. When D is not an integer, the

relationship established for D odd integers is expected to hold.
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VII. DISCUSSION

Our result for the susceptibility obtained as a function of z and D are
embodied in Fig. 2, which gives a 3-dimensional projection of XxzD. 1It is
reminiscent of the PVT diagram of a hbmogeneous fluid. The surface represents
the susceptibility that ;s phfsically accessible as z and D are varied. The
shape of the surface is distinguished by an unbroken "ridge" (marked in the
figure by small circles). It is a line of branch points, a z=1 constant
line.. The ridge separatés the surface into two éides (high and low k).
The low-k side of the surface is further subdivided by the D=2 constaht line
into an area of ?ising curvature and an area of falling curvature. The high

k side of the surface is not further divided. Hence, the ridge is folded

upward for 1 < D < 2 and folded downward for 2 < D < =,

The ridge itself shows very smooth behavior, becoming singular at one
end (D=1) and vanishing at the other end (D=»). Other z-constant lines, e.t-,-.-.~
z = O are less interesting. More interesting is D-constant lines which
interesect the ridge. They look much like the familiar isotherms in the PV
diagram (also compare Fig. 1). When D is an inﬁeger, the intersection is a
point of singularity, either open as in D = 1 or hidden as in D = 2. The
ridge is punctuated with these intersections throughout.

Other finer details of the susceptibility surface are possible to give.
Except on the D-constant lines of even integers, one can move across the ridge
via analytic continuation. These excepted lines are demarcated by the ridge.
That is, on these excepted lines, the knowledge of one side is insufficient
to describe the other side.23 The singularity at z = D = 1 is weaker when
approached perpendicular to the ridge than when approached along the ridge.

To some extent our picture is applicable to an interacting electron gas by
24

virtue of the RPA theories.
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Captions

Analytic expressions of the susceptibility. These results are

obtained by the relationships of the contiguous h.g.f.

) ) ) Y

Ly =1n(l +2%9/(1 -z) and L, = 1a(1 + 2" )/(1 -~ 2 ),

Boundary values of the susceptibility. %' and X" are, respectively,
the first and second derivatives of %(z,D) with respect to z at 2

= 1. These undesignated ®»'s are divergent as (1 - z"]').1 for

%

Deven and (1 - z 9™} for D 0dd. In the unfilled regions, the

appropriate formulas are given.

The susceptibility vs wave vector at integer values of D.

k in units of kF'

The susceptibility as a function of z and D. Small circles form

a line of branch points. z = (k/2)2.
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Table I

X

z-%(l - z)_!i sin~1z
1l

1 - 22/3

1 - 4z/3 + 822/15

%z-% L,

%

L+ ¥z ‘(1 - z)L,

5/8 - 3z/8 + 3/15z"’(1 - 2) 21:.1

1 -2z/3-(1 - (1 - 2 1)¥?

1l - 4z/3 + 822/15-(1 - (1 -

3 + kz’*u - 2)L,

5/8 ~'32/8 + 3/162-*(1 - 3)2

z-l

L,

)5/2
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Table II
W% ¥oo% ¥ %
«(log) »(log) L] -® L ®
1 1 0 — 0 P
L] ] -»(log) ==(log) o ®
1/3 1/3 -3/2 -3/2 0 o
-3/8 -3/8 = (log) o (log)
16/15 16/15
. S - (D~2)
(D-1) (D-1) (D-3)

2(D-2) (D-4)

(D-1) (D-3) (D-5)
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